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The evolution of unsteady boundary layers in the vicinity of the leading edge of a 
thin oscillating airfoil has been examined with a novel numerical method which is 
able to deal with the movement of the stagnation point and with regions of reverse 
and separated flow. Solutions to the unsteady boundary-layer equations, with a 
prescribed pressure distribution which causes flow reversal and separation, 
demonstrate the importance of numerical steps in distance and time and that a 
requirement similar to the stability criterion of Courant, Friedrichs and Lewy must 
be satisfied to avoid numerical errors. At the lower reduced frequencies of the 
investigation, solutions could not be obtained with this procedure and i t  was 
necessary to introduce interaction between the viscous and inviscid flows. The 
solutions obtained with the interactive method were increasingly different from 
those without interaction as the reduced frequency was decreased towards zero and, 
for some combinations of Reynolds number and frequency, exhibited behaviour 
consistent with the instability of separation bubbles. 

1. Introduction 
The lift and drag characteristics of airfoils a t  moderate Reynolds numbers can be 

affected by separation bubbles which occur close to the leading edge and, a t  high 
angles of attack, can increase in size to cause stall. The added complexity of unsteady 
motion such as that associated with the rotor blades of helicopters implies that the 
flow characteristics are influenced by amplitude and frequency and that, in 
particular, the stall characteristics can be considerably modified. The investigations 
of Carr, McAlister & McCroskey (1977), Francis, Keese & Retelle (1983), Daley & 
Jumper (1984) and Lorber & Covert (1986) examined these effects over limited 
ranges of the parameters, and that of Carr et al. (1977) provides detailed information 
on the mechanism of dynamic stall of an oscillating airfoil. It appears that stall is 
associated with flow reversals in the unsteady boundary layer and that these may 
translate downstream or upstream depending upon various parameters including the 
radius of the leading edge of the airfoil. At some stage in the cycle, stall occurs and 
is preceded by a vortex which forms close to the surface and is probably associated 
with a breakdown of the unsteady boundary layer. 

The above physical problems involve laminar, transitional and turbulent flow and 
their representation requires a numerical calculation procedure that can provide 
accurate solutions to conservation equations in all regions of flow as well as 
appropriate transition and turbulence models. Here we are concerned with the 
numerical solution procedure, its development to represent the regions of reverse 
flow and its use in examining the nature of solutions for parameters close to those 
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associated with stall. The emphasis is on regions of flow close to the leading edge of 
a thin oscillating airfoil and calculations are performed with a prescribed pressure 
gradient and with interaction between solutions of the viscous and inviscid 
equations. With the configuration chosen, an analytical solution for the potential- 
flow equations was available. 

Previous consideration of steady boundary layers and their solution by an 
interactive procedure has been reported by Cebeci, Stewartson & Williams (1981) for 
a model problem consisting of a thin ellipse a t  incidence. Their study showed that the 
solutions were well behaved and unseparated provided the reduced angle of attack 
was less than 1.155. At higher angles separation occurred with an associated 
singularity, which was overcome by the use of the interactive procedure, and results 
were obtained for small regions of separated flow. There is, however, a limiting size 
of separation bubble beyond which Cebeci et al. (1981) could not obtain solutions and 
this may be related to the physical phenomenon of open separation and stall. A 
similar result was obtained by Stewartson, Smith & Kaups (1982) who used a triple- 
deck approach and found that their calculations of separation bubbles could break 
down with a small increment in pressure gradient. They also observed that their 
solutions were not unique and their results may imply that large separation bubbles 
cannot exist in laminar flows a t  high Reynolds numbers. 

The unsteady-flow calculations reported here were obtained with Keller’s (1974) 
box method for the solution of the boundary-layer equations. I n  regions of flow 
reversal, a requirement similar to the stability criterion of Courant, Friedrichs & 
Lewy (CFL), see Isaacson & Keller (1966), is satisfied by the use of the characteristic- 
box procedure discussed by Keller (1978) and Cebeci (1986), and the interactive 
procedure is based on the Hilbert integral previously used by Cebeci et al. (1981). This 
combination of methods represents the best possible approach available to the 
authors and allows the importance of the stability criterion /3 to be examined as well 
as the structure of the solutions. Of necessity, a limited number of parameters is 
considered but they encompass a range of relevance to oscillating airfoils. 

The flow configuration under consideration, equations, and initial and boundary 
conditions are examined in the following section, which is followed by a brief 
description of the solution procedure. The results are presented and discussed in 94 
and the paper ends with a summary of the more important conclusions. 

2. Flow configuration, conservation equations, initial and boundary 
conditions 

unity at  an angle of attack 01. The body surface is defined by 
We consider flow over an ellipse with a thickness ratio t , ( r  b / a )  much less than 

x =-a cos0, y = a t ,  sin0 (-71 < 0 d K ) ,  

and the corresponding external velocity for steady flow can be deduced from 
inviscid-flow theory to  be 

(1) 
( + t o  uZ(s,t) = ___ 

(1 +pp’  
- 

Here z(s, t )  denotes a dimensionless velocity uZ/u,( 1 + t , ) ,  the parameter ( denotes a 
dimensionless distance from the nose related to the x- and y-coordinates of the ellipse 
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by x+ a = iat; t2, y = at; g, and to( = a / t l )  represents a dimensionless angle of attack. 
The parameter 6 is related to the surface distance s by 

The boundary-layer equations 
oscillating airfoils are well known 

J o  

for unsteady incompressible laminar flows on 
and can be written as 

au av -+- = 0, 
as an 

au au 
(3) 

Solutions to these equations are usually obtained for prescribed boundary conditions 
given by 

and we shall refer to this as the standard problem. In the interactive problem we 
determine ue(s , t )  partly from inviscid theory and partly from the pressure 
distribution resulting from the blowing velocity d/ds (u,6*) induced by the boundary 
layer. Thus we write 

n = 0, u = v = 0 ;  n = n,, u = u,(s,t) (4) 

ue(s, t )  = .“,a, t )  + uc(s,  t ) ,  ( 5 )  

where @(s, t )  is the inviscid velocity and u,(s, t )  is related to the blowing velocity by 
a variation of the Hilbert integral 

d a  

which is valid for straight walls but can be generalized to airfoils as discussed by 
Cebeci & Clark (1984). The free-stream velocity, consistent with (l) ,  has the form 

- [+t0(1+A sinw*t) 
u:(s , t )  = 

(1  + 52); 
, (7)  

where A is an amplitude parameter and w* is a dimensional frequency. 
For attached flows, the effect of u,(s,t) is generally weak but is enhanced in the 

neighbourhood of separation, as can be surmised by noting that the integrand in (6) 
would otherwise develop a strong singularity at separation and cause the solutions 
to break down further downstream. As discussed by Cebeci et al. (1981), it is sufficient 
to replace (6) by 

where the prime denotes differentiation with respect to s and s, and sb denote the 
beginning and the end of the interaction region. 

To complete the formulation of the problem, upstream boundary conditions must 
be specified in the ( t ,  n)-plane at  some s = so as well as initial conditions in the plane 
(s, n) at t = 0. If steady-flow conditions prevail a t  t = 0, the initial conditions can be 
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w* = in. 
FIGURE 1. Variation of stagnation point with time for one cycle according to (10) with A = 1, 

obtained easily for both surfaces by solving the conservation equations for steady 
flow which, in this case, are given by ( 2 )  and by 

There is no problem with the initial conditions for (2) and (9) since the calculations 
start at the stagnation point where they admit similarity solutions. 

The generation of the upstream boundary conditions for ( 5 )  and (6) requires a 
special numerical procedure. Siwe the complete velocity-profile distribution on a 
previous time line is known, solutions can be determined on the next time line by an 
explicit method. If we wish to avoid stability problems, however, an implicit method 
is required and generation of a starting profile on the new time line becomes a 
problem. 

In  order to explain the problem further, it is instructive to see what happens to the 
- stagnation point as a function of time. For this purpose let us consider (7). Since 
u: = 0 at the stagnation point, its location, &., based on the external streamlines is 
given by 

Figure 1 shows the variation of the stagnation point with time for one cycle 
according to (lo), with A = 1, w* = f. We see that when t = 2 ,  the stagnation point 
f s  is a t  - 2 t 0 ,  and when t = 6, it is at 0, etc. If ts were fixed, we could assume that 
u = 0 a t  5 = -6, for all time and all n, but this is not the case. It is also possible to 
assume that the stagnation point is coincident with zero u-velocity for a prescribed 
time but we should note that the stagnation point defined by (10) is based on the 
vanishing of the external velocity. For a time-dependent flow, this does not imply 
that the u-velocity must be zero across the layer a t  a given f-location and specified 
time; indeed flow reversals can occur owing to  the movement of the locus of zero 
u-velocity across the layer and can cause numerical instabilities which require the use 
of special numerical schemes as discussed by Cebeci & Carr (1981). 

f ,  = -&,(l+A sinw*t). (10) 

3. Solution procedure 
With the upstream boundary conditions determined by the procedure of Cebeci & 

Carr (1981) and with the initial conditions obtained from the solution of (2) and (9) 
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subject to the boundary conditions given by (4)-(6) ,  ( 2 )  and (3) can be solved for both 
standard or inverse problems. In practice a standard procedure is used up to a 
specified t-location after which the calculations may proceed by either standard or 
inverse procedures. For example, the evolution of the boundary layer on an 
oscillating airfoil with prescribed pressure distribution is determined with the 
standard procedure and the inverse procedure is used after a short distance from the 
leading-edge region where the inviscid- and viscous-flow equations are solved 
interactively . 

To solve the equations for both standard and inverse problems we use modified 
forms of Keller’s box scheme. The Mechul function formulation of Cebeci (1976) is 
used in the inverse case and treats the external velocity as an unknown. Before we 
describe this formulation and the solution procedure, it is convenient to write (2)-(4) 
in a form more suitable for computation. To achieve this we define dimensionless 
distances 7 and s and time r by 

with R = 2au,/u, and a dimensionless stream function f by 

@(s, n, t )  = [ ( I  +t,) au,vt;l~f(s, 7,7). ( 1 l b )  

These relations may be introduced into ( 2 )  and (3) to give, with primes denote 
differentiation with respect to 7, 

U where W =  u e  f ’  = 
t l )  ’ u,(l+t,)‘ 

The boundary conditions follow from (4)-(6j and can be 

y = o ,  f = f l = O ;  

written as 

1 

Here A denotes a dimensionless displacement thickness given by 

and e is a parameter defined by .=-[ 1 2 r  1 .  
ntl R( 1 + t l )  

To pave the way for the description of the numerical method, we define a new 
variable 

aw aw aff ,ay 
f’”+f”O+-+w- = -+f -, ar as ar as 

and write (12)  as 

where the overbar has been omitted. We use Keller’s (1974) box method to solve this 
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Si-I $6 % + I  

FIGURE 2. Notation for the characteristic box scheme. 

equation. In regions of no flow reversal the so-called standard box method is used, 
and where there is flow reversal this is replaced by the characteristic scheme that is 
based on the solution of (17) along streamlines as described by Keller (1978) and 
Cebeci (1986). This scheme allows the step sizes in the 7- and s-directions to be 
automatically adjusted to ensure that the region of backflow determined by the local 
streamlines does not violate a condition like the Courant, Friedrichs and Lewy (CFL) 
stability criterion defined by ,I3 = 1/67 (see figure 2 ) .  Although the zigzag scheme of 
Krause, Hirschel & Bothemann (1968) can also be used for this purpose, it can be 
inaccurate in regions of large flow reversal since the orientation of the numerical 
mesh is chosen a priori, as discussed by Cebeci (1986) and later in this paper. 

To solve (17) and (14) with the box scheme and the Mechul function formulation, 
we let 

f’ = e (18) 

and introduce a new function g defined by 

e’ = g (19a)  

and, with w(x) treated as unknown 
w‘ = 0, 

write (16) and (17) and their boundary conditions as 

aw aw ae ae 
g’+gO+-+w- = - + e - ,  a7 as a7 as 

I q = 0 ,  f = e = O ;  

ds S-u  
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To write the difference equations for the system given by (19) and (20), we consider 
a net cube in which the net points are denoted by 

(21) 1 s,,=O, s i =  ~ ~ - ~ + r ~  ( i= 1,2 ,..., I ) ,  

70 = 0, (n = 1,2,  ..., N ) ,  7, = 7 n - 1 + k ,  

~ 0 ~ 0 ,  ~ j =  ~ j - l + h j  ( j =  i , 2  ,..., 4, 

where r i  = A s i , k ,  = Arn and hi = AT*. 

about the midpoint (s i ,  r,, qj-;), 
The difference approximations to represent ( i9a,  b) are obtained by averaging 

The finite-difference approximations to (19c, d )  are obtained by centring all 
quantities except 8 a t  the centre of the cube (s,+ rn-;, nj-;) by taking the values of 
each, say q, at the four corners of the box ; that  is, 

The centring of 0 is done by writing it as 

(24b) 
e!-$ n-; = ‘(8i-i. n + ,y-& n-1 

1-5 2 5  1-1 *). 

h;’ (8, - 8i-l) = r;l( ci - E~~~ ) , 

In  this notation, the difference approximations to (19c, d )  can be written in the 
form 

(25a) 

h~’(gj-gj-~) +gi-;Oi-;+ k; l (mn-mn-l )  +r;l[mi.-;(mi-mi-l)] 

= ~ ~ l ( ~ n - ~ n - l ) + ~ ~ l [ ~ j - ~ ( ~ i - ~ ~ - l ) - g i - ~ ~ - ~ - l ) ] ,  (256) 
where, for example, 

(26) 
6. = e t 4  4 en = e!-i* ci = e;L!-i, 8 ,  = ei-i n-1 

j 2 ’  2 ,  
3-5 ’ 3 3  

Following the procedure of Cebeci et al. (1981) the boundary condition involving the 
Hilbert integral in (20) can be written in the form 

w$n-cid ~ ( 7 ~  w$ n -?, J ”) = Ti, J n, (27 ) 

where cii is the matrix of interaction coefficients defining the relationship between the 
dimensionless displacement thickness and external flow, and the parameter T$ 
represents terms where values are assumed to be known. It is given by 

(-1 1 

T$, = ( U ” , ) ~ T ~ + E  C C i m A Y * n + ~  C CimAYqn. (28) 
m-1 m-i+l 

To compute the additional unknown of (27), we write (18) in the form 
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so that the system consisting of (22), (25) and (29) can be solved subject to the 
boundary conditions given by (27) and which follow from (20), 

f, = 8, = e ,  = 0;  e ,  = w,. (30) 

The above system can be linearized by Newton’s method and the resulting linear 
system solved by the block elimination procedure described in Cebeci & Bradshaw 
(1984) for both standard and inverse formulations. In  the former case, it is sufficient 
to set E = 0 in (27) so that w is equal to 2. 

We follow the above solution procedure when there is no flow reversal across the 
layer. If separation is identified from the values of u;yn, we use the characteristic 
scheme that has recently been described by Cebeci (1986) in relation to the standard 
problem of computing the impulsively started laminar flow over a circular cylinder. 
The solution procedure in this case is similar, with small adjustments resulting from 
the manner in which the difference equations are adjusted to the modified form of 
(19d). Noting the definition of local streamlines, we write 

ds 
e 

d7 = - 

If we denote distance in this direction by q and the angle that it makes with the 
r-axis by a, then (19d) can be written as 

where 

ae 
g’+gB+y = A--, 

aq 

aw aw 
a7 as A = (l+e2);, a = tan-’e, y = -+w-. 

The finite-difference approximations to (32) are written along the streamline 
direction (see figure 2) a t  

where (35) 

The relation between 8j”; and those values of 8 centred at ( i -&n-$)  and (i-g, 
n-g) are 

The solution of (12) subject to the boundary conditions given by (13) is achieved 
by solving the system of equations given by (18)’ (19) and (20) (standard scheme) 
when there is no flow reversal. When calculated results reveal flow reversal (ej < 0 ) ,  
further iterations a t  that location make use of the characteristic scheme that seeks 
the solution of (18), (19a, b,c) and (32) for ei < 0 and the regular scheme for ei < 0. 
This switch from one scheme to another continues to allow quadratic convergence and 
ensures that numerical instabilities are avoided provided that the step lengths in the 
7- and s-directions are ‘properly’ selected, as we shall discuss in the following 
section. 
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4. The question of singularity on an oscillating airfoil 
The problem of a circular cylinder impulsively started from rest has served as a 

model problem with which to examine unsteady boundary layers and the nature of 
the solutions in the presence of large flow reversal. Noteworthy contributions have 
been made by Cebeci (1979), van Dommelen & Shen (1982), Cowley (1983) and 
Ingham (1984), and show that a t  large times the distribution of displacement 
thickness has a steep rise near the location of zero wall shear, with a consequent 
tendency for calculations to break down. The suggested values for the time and 
location of zero wall shear and peaking of the displacement velocity, [d/ds(u,&*)] 
vary. The explanation for the breakdown of the calculations has been provided by 
Cebeci (1986) who demonstrated that numerical calculations must satisfy a CFL-like 
stability criterion. If this is done, it is expected that the location of the singularity 
associated with unsteady flow and large time will correspond exactly to that of 
steady flow, namely r9 = 105", rather than 0 = 111". The same situation cannot be 
expected with oscillating airfoils where the solutions are cyclic and do not tend to a 
steady state. 

The present study examines the nature of solutions to the boundary-layer 
equations for the flow on an oscillating airfoil, which can give rise to extensive 
regions of flow reversal and separation. Here flow reversal implies the existence of 
negative wall shear, and separation is taken to correspond to situations where 
calculations with a prescribed pressure distribution break down owing to a 
singularity. The calculations were made for three values of reduced frequency w ,  with 
to = 1 and A =+. With the choice of w = 0.001, 0.01 and 0.10, the maximum value 
of tefE, defined by t,,, = t o ( l + A  sinw*t), 

is sufficient to provoke separation with a strong singularity. For example, the 
maximum value of t,,, is 1.5 a t  WT = 270" and the flow conditions closely resemble 
a steady separated flow at  the smaller frequencies w = 0.001 and 0.01. Since the value 
of tePf corresponding to steady flow separation is 1,115, we would expect the 
calculations to break down before WT = 270" owing to  the singularity. For the higher 
frequency case (w = 0.10), we expect the solutions to break down later than 
WT = 270" with flow reversals occurring in the range 270" < WT < 360". 

The calculations were arranged to parallel those previously performed for a 
circular cylinder and reported by Cebeci (1986). Thus both the zigzag and the 
characteristic-box schemes were used first with time and distance steps that were 
chosen arbitrarily and subsequently with values in agreement with the stability 
criterion. The results of figure 3 for w = 0.10 were obtained with the zigzag box 
scheme by Cebeci, Khattab & Schimke (1984) for a A t  spacing specified such that 
At i  = 0.01 up to ( = 1.7, At i  = 0.005 for 1.7 < 5 < 4 and Ati = 0.01 for 4 < < < 8; the 
time steps k, were 10 degrees for 0 < WT < 260°, 5 degrees for 260" < WT < 295", and 
1.25 degrees for 295" < OT < 360". The calculations broke down at  WT = 310", 
indicating flow separation a t  this location. 

Figure 3 ( a )  shows that the variation of the displacement thickness 

- 6* 1 &*=-- 
a e n ~ :  

is generally smooth except in the neighbourhood of 5 = 2.12 and for WT = 308.75". 
The first sign of irregularity is the steepening of the slope of 8* when WT = 300°, and 
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FIQURE 3. Variation of ( a )  displacement thickness 8*, ( b )  displacement velocity d/d[(u, $*), and 
(c )  wall-shear parameter fk with 6 for the oscillating airfoil; A = 1, o = 0.1. 
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FIGURE 4. Variation of (a) displacement thickness 8*, (b)  displacement velocity, and (c) wall- 
shear parameter with 19 for the circular cylinder. 

a local maximum of8* occurs a t  6 = 2.12 when or = 308.75'. When the same results 
are plotted for a displacement velocity, (d/d() Cue$*) (figure 3b) we observe that the 
steepening of the displacement velocity as the peak moves from 6 = 2.125 to 2.08 
with wr changing from 300" to 308.75'. It should be noted that the maximum value 
of displacement velocity moves towards the separation point with increasing wr and 
the same behaviour will be shown to occur for the circular cylinder discussed below. 
As shown in figure 3 (c), the wall-shear parameterf:; shows no signs of irregularity for 
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0 7  k n  

0-240" 10" 
24G255" 5" 
255-26 1 " 3" 
261-265" 2" 
265-284" 1" 
284-305' 0.5" 
305-320" 0.25' 
320-360" 0.5" 

TABLE 1. The distribution of step sizes in WT for w = 0.1 in accordance with the requirements of 
the stability parameter /3 
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w 

FIQURE 5. Effect of the coarse and fine meshes on the variation of the stability parameter /3 
with 07. 

WT < 308.75" but a deep minimum in74 occurs near [ = 2.15, i.e. near the peak of 

It is interesting and useful to compare the results presented in figure 3 for an 
oscillating airfoil with those obtained by Cebeci (1982) for a circular cylinder started 
impulsively from rest, figure 4, and obtain with the same zigzag scheme. As in the 
case of the oscillating airfoil, the flow reverses and remains smooth up to the 
separation point. However, just downstream of separation with increasing time, a 
singularity seems to develop in the neighbourhood of 0 = 112" and T z 3.0 and it was 
not possible to continue the boundary-layer calculations beyond this time and 
angular location. From figure 4 ( a )  we see that the variation of displacement 
thickness is smooth for values of 0 less than 108" and it begins to steepen thereafter. 
The same results are plotted in figure 4(b )  to demonstrate that the displacement 
velocity exhibits a maximum which increases rapidly with time, as in figure 3(b) ,  
with the maximum shifting towards the location of separation with increasing time. 
The results of local skin-friction coefficients, figure 4 ( c ) ,  follow similar trends to those 

i* . 
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FIGURE 6. Effect of the coarse and fine meshes on the variation of the (a) stability parameter p 

and (b )  wall shear f:: with 5. 

I L , I -0.3 L 
0 1 2 3 4 5 

FIGURE 7. Results obtained with the chars-cteristic-box scheme for o = 0.1. Variation of (a) 
displacement thickness 6* and (b )  wall shear f:: with 6. 

obtained for the oscillating airfoil with the distributions passing through zero with 
no signs of irregularity and no breakdown before the time corresponding to the 
singularity . 

The calculations that led to figure 3 were repeated with the characteristic-box 
scheme using the same coarse variations of k, and A&, and the results were identical 
with those obtained with the zigzag scheme up to 07 = 280". At or = 282.5", the 
solutions of the zigzag scheme were smooth and free of wiggles but those of the 
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FIGURE 8. Variation of (a) wall shear f:: and (b) displacement thickness 8* with 5 for w = 0.01. 

characteristic-box scheme exhibited oscillations in ft which led to their breakdown. 
The solutions with the zigzag scheme, however, continued without numerical 
difficulties until wr = 310', where oscillations appeared and led to the breakdown of 
the solutions a t  the next time step. 

The characteristic box was used subsequently with values of A& fixed as before and 
with values of k ,  determined in accord with the stability requirement as shown in 
table 1.  This procedure avoided the breakdown of the solutions and, as can be seen 
from figure 5, the maximum value of /3 increases considerably with WT so that the 
solutions required correspondingly smaller values of the time step. It is interesting 
to note that the wall-shear distributions of figure 6 are uninfluenced by the mesh at 
wr = 280" and 310" but, for wr > 310", the coarse mesh leads to large values of /l and 
breakdown of the solutions. 

Figure 7 ( a )  shows the distributions of displacement thickness for values of WT from 
260" up to 360" and completes the cycle. The results up to 300' were identical with 
those of figure 3 ( a )  with rapid increase of the displacement thickness corresponding 
to the increasing extent of flow reversal, as shown by the wall-shear distributions of 
figure 7(b ) .  It can also be seen from this figure that the maximum displacement 
thickness and minimum wall shear move upstream with increasing wr for values of 
wr up to 324.5' ; this feature was also observed in the calculations performed for the 
circular cylinder and shown in figure 4. The results obtained with the zigzag scheme 
and values of k, determined by the characteristic scheme for the oscillating airfoil 
were identical with those discussed above, and similar correspondence was obtained 
with the calculations performed for the circular cylinder. 

Figures 8 and 9 show the distributions of wall shear and displacement thickness for 
two smaller frequencies, w = 0.01 and 0.001. As expected, the critical value of the 
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reduced angle that corresponds to separation is smaller than that for the higher 
frequency and closer to that of the steady state, 6 = 1.16. For w = 0.01, the 
breakdown of the solutions occurs at OT = 226", which corresponds to an effective 
reduced angle of teff = 1.360; for w = 0.001, the corresponding values are wr = 204' 
and 1.203. We also note from figure 8(a ,  b )  that the flow is a 'little' unsteady even 
at  these frequencies, and the solutions do not break down with the appearance of flow 
reversal, which increases in extent as w changes from 0.001 and 0.01. 

5. Interaction as an answer to the question of singularity 
The interaction procedure discussed in $ 3  has been applied to the flow problem 

examined in § 4 with the standard method, and the results are shown in figures 10-14 
and discussed below. In  contrast to the standard problem, which makes the implicit 
assumption of infinite Reynolds number, the interaction requires specification of a 
finite Reynolds number. A thickness ratio t ,  has also to be specified and, since the 
definition of E involves R and t,, the calculations are performed for specified values 
of c. In all cases shown, the calculations made use of time steps determined by the 
characteristic scheme in agreement with the stability requirement. This was not done 
in the calculations of Cebeci et al. (1984) and the solutions exhibited oscillations 
which stemmed from the numerical method. 

The present calculations were performed in the following way. For all values of 
time, with wr ranging from 0' to 360°, the standard method and the leading-edge- 
region procedure of Cebeci & Carr (1981) were used to generate initial conditions a t  
a short distance from the leading edge, 9 = 0.5. With these initial conditions and for 
each value of WT,  the inverse method was used to calculate the unsteady flow from 
9 = 0.5 to 10, for the specified value of E .  Since the system of equations is now elliptic, 
sweeps in the 9-direction were necessary to achieve a converged solution; around 
three sweeps were required where flow reversal was encountered and a single sweep 
sufficed where it did not. It is to be expected that the value of c: will influence the 
number of sweeps and, since it is linked to physical parameters, will affect the 
singularity and the size of the bubble. 

They 
are nearly the same as those obtained by the standard method and shown in figures 

Figures 10 and 11 show the results for w = 0.001 and 0.01 with e = 3 x 
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8 and 9 prior to flow reversal where the influence of the Reynolds number is small and 
increase after flow reversal. In the case of w = 0.001, for example, the standard 
method predicts flow reversal around teff = 1.19 (see figure 9), and with interaction 
(figure 10) this effective angle is between 1.219 and 1.254. The maximum negative 
value of the wall-shear parameter f :  obtained with the standard method is around 
-0.03 a t  Ceff = 1.199 and may be compared with the maximum value off; of -0.14 
at teff = 1.286 obtained with interaction. As expected, the interaction allows the 
calculations to be performed at higher angles of attack than those achieved with 
the standard method. For w = 0.001, the maximum aeff for which calculations can 
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be performed with the standard method is 1.199 with breakdown occurring a t  
[,,, = 1.209; the corresponding values with interaction are 1.286 and 1.287. 
Comparison of wall-shear results with both procedures and w = 0.001 indicates that 
the extent of the recirculation region A( is around 0.5 for the standard case, and 
around 2.5 for the interactive case. The solutions do not have a singularity in the 
former case but do contain flow reversals, and this suggests that time-dependent 
flows can be calculated without using an inverse procedure. As the angle of attack 
exceeds Ceff = 1.199 for w = 0.001, a singularity develops and requires an inverse 
procedure as in two-dimensional steady flows. This procedure allows the calculation 
of larger regions of reverse flow where the flow is now separated. 

We see a similar picture with the greater unsteadiness corresponding to w = 0.01, 
for which the standard method allows calculations up to an effective angle of attack 
of 1.354 (figure 8a), a value considerably higher than 1.199 obtained at  w = 0.001. 
The first flow reversal occurs shortly after teff = 1.294 and breakdown occurs a t  
[eff = 1.360 with maximum negative wall shear values of -0.14 a t  geff = 1.354 and 
-0.035 a t  Ceff = 1.315. The extent of the maximum reverse-flow region is now 1.5, 
considerably larger than for w = 0.001, and indicates that the more unsteady nature 
of the flow produces a bigger region of reverse flow free from singularities. For this 
value of w ,  the interactive scheme increases the value of teff for which solutions can 
be obtained to 1.424 with breakdown occurring shortly after this value, a t  1.428 (see 
figure 11) .  The first flow reversal occurs after Ceff = 1.315 with maximum negative 
wall shear equal to -0.19 a t  teff = 1.424, and the extent of the recirculation region 
has now increased by about 30 YO. Comparison of maximum wall shear values f I: a t  
a similar value of teff indicates that those computed with the interactive scheme are 
lower than those with the standard scheme so that, for example, the interactive 
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scheme gives (flk)max = -0.04 a t  teff = 1.36 compared with -0.14 at' teff = 1.354 with 
the standard method (figure 8a).  

Figure 12 shows that the size of the reverse-flow region increases with Reynolds 
number but the effective angle of attack for which solutions can be obtained is only 
slightly reduced, changing from 1.428 for E = 3 x lop3 to around 1.415 for E = lop3. 
It is interesting to note that the interactive solutions do not have any flow reversal 
a t  ceff = 1.315 with E = 3 x 

Figures 13 and 14 show the results for o = 0.1 with values of E of 3 x lop3 and 
lop3 and they are again similar to those obtained by the standard method, as shown 
in figure 7,  prior to flow reversal where the influence of Reynolds number is small. 



Separation and reattachment near an  oscillating airfoil leading edge 27 1 

14 

12 

10 

8 -  

8* 
6 -  

4 -  

o.20 I 

- 

- 

- 

0.15 

0.10 

0.05 

0 

2 t  
~ 

0 1 2 3 4 5 6 7 8  

5 
FIGURE 15. Effect of interaction -on the variation of (a)  wall shear f:: and ( b )  displacement 

thickness 6* for a steady flow a t  E = 3 x 

After flow reversal, the differences between the results obtained with the standard 
and interactive methods increase as the Reynolds number decreases. It is clear that  
the solutions are free from the numerical 'wiggles' encountered when the stability 
criterion was not met. 

Comparison of results obtained a t  the two Reynolds numbers for w = 0.1 indicates 
that  the interaction does not reduce the maximum negative value of the wall-shear 
parameter as it did with lower frequencies. For example, 7:: a t  w r  = 360" is around 
-0.19 with the standard scheme, and around -0.30 a t  6 = 3 x lop3, and around 
-0.35 a t  6 = lop3 with the interactive method. The maximum value of negative wall 
shear calculated with interaction is considerably greater than its corresponding value 
obtained with the standard method at the end of one complete cycle. Furthermore, 
the behaviour of the wall shear is not monotonic without interaction so that, for 
example, 7; reaches a maximum value equal to -0.25 around w r  = 331" and then 
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decreases to -0.195 at wr = 360". With interaction this is not the case, with the 
maximum negative value of fk continuously increasing with wr .  

The results of figures 7 ,  13 and 14 for w = 0.1 are for an unsteady flow and are 
unlike those for two other values of w in that they are free from singularities. For this 
reason, even though the results in the reverse-flow region and thereafter are different, 
owing to the Reynolds-number effect, the extent of the reverse-flow region is 
essentially the same and is consistent with the results obtained a t  lower frequencies 
in the absence of flow separation even though the extent of the reverse-flow region 
is reduced a t  the lower Reynolds numbers. 

Since the calculations began a t  w r  = 0" with solutions obtained by solving steady- 
state equations, it was necessary to confirm the extent of their influence. As a 
consequence, calculations were performed for a second cycle and gave results a t  
w7 = 720" that were identical with those at wr = 360", confirming that the flow is 
cyclic. Examination of the results showed that the influence of the initial conditions 
die out rapidly and have no influence on the solutions presented here. 

The results obtained with w = 0.001 can usefully be compared with the steady- 
state results of Cebeci et al. (1981) shown in figure 15. We might expect that the small 
unsteadiness associated with this frequency will lead to results very similar to those 
of steady state. Inspection of figures 10 and 15 shows that, although this is correct 
in general terms, the answers are quantitatively different. As can be seen, the 
maximum effective angle at which solutions can be obtained is greater in the 
unsteady case by some 7 YO. There are differences in the two calculation procedures 
but it is unlikely that they are responsible for this difference. On the other hand, it 
is possible that the difference in the negative wall-shear values may have been 
influenced by the use of the FLARE approximation in the steady-state solutions. 
Nevertheless, the unsteady nature of the flow with w = 0.001 is clear, in spite of this 
very low reduced frequency. 

6. Concluding remarks 
The following principal conclusions may be drawn from the preceding text. 
(i) A calculation method has been developed to represent flows around oscillating 

airfoils. It is based on a similar approach used for steady flows with separation and 
involves interaction between inviscid- and viscous-flow equations. The coupling 
technique is similar to  that described by Veldman (1981) and Cebeci et al. (1981) for 
steady flows. This interactive method has been used to calculate separation and 
reattachment near the leading edge of a thin oscillating airfoil and has been shown 
to give rise to rapid convergence similar to that obtained in steady flows (Cebeci et 
al. 1986). 

(ii) The accuracy of the results obtained from the solution of the boundary-layer 
equations has been examined with emphasis on regions of flow reversal and 
separation where the characteristic-box scheme is used. Attempts to improve 
accuracy by ad hoc changes to the finite-difference mesh failed and revealed the need 
for a procedure which would automatically guarantee accuracy by the selection of an 
appropriate mesh. This was achieved through a stability criterion, similar to that of 
Courant, Friedrichs and Lewy. The combination of this requirement and the 
characteristic-box scheme led to accurate solutions and showed that the mesh 
requirements were extremely severe in the region of large flow reversals. 

(iii) Calculations have been performed for a range of reduced frequencies from 0 to 
0.1. They show that, increased unsteadiness allows results to be obtained a t  higher 
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angles of attack before the solutions break down ; indeed in the case of the highest 
frequency there was no breakdown. The calculations with the standard method led 
to regions of flow reversal that were limited in their extent by the singularity except 
at the highest frequency. The interactive procedure removed this singularity and 
resulted in larger regions of flow reversal that involved separation a t  higher angles 
of attack. 

The calculated maximum angles of attack were, however, modest and regions of 
separated flow were small. This is consistent with the behaviour of steady laminar 
flows which can only sustain small separation bubbles. 

The unsteady nature of the flow a t  the highest frequency allowed the calculation 
of large regions of flow reversal and it is expected that yet higher frequencies will lead 
to even larger regions of flow reversal. This in turn will permit calculations to be 
performed a t  larger angles of attack where the occurrence of the singularity will 
require the use of the interactive procedure. The gains in angles of attack are again 
likely to be limited by the ability of the laminar flow to sustain separation 
bubbles. 

(iv) The interactive scheme, incorporating the solution of the boundary-layer 
equations by the characteristic-box scheme and with the numerical mesh determined 
in accordance with the stability criterion, has been used to calculate the laminar flow 
for a model problem. The numerical aspects of this procedure have been thoroughly 
tested and shown to be general, so that i t  can be used for the solution of laminar and 
turbulent flows over airfoils of practical relevance. 

This research was supported under Air Force Office of Scientific Research contract 
F49720-85-(3-0063. 
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